Cara Mencari Keliling Lingkaran Jika Diketahui Diameternya
Rumus Keliling Lingkaran
Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.
Baca berita dengan sedikit iklan, klik di sini
Adapun rumus keliling lingkaran sebagai berikut:
Pengertian Titik Pusat Lingkaran
Selain ngebahas tentang pengertiannya, gue juga mau ngasih tahu kalau ada unsur-unsur pelengkap di lingkaran. Emangnya, ada unsur-unsur apa aja, sih?
Pertama, ada yang namanya titik pusat lingkaran. Apa yang dimaksud dengan titik pusat lingkaran? Jadi, titik pusat lingkaran adalah titik yang berada di tengah lingkaran.
Terus, ada juga yang namanya diameter, nih. Apaan lagi, tuh? Nah, tali busur yang melewati titik pusat lingkaran disebut sebagai diameter. Unsur lainnya yang nggak kalah penting yaitu jari-jari lingkaran, letak titik pusat lingkaran ke garis lainnya.
Biar elo bisa paham seutuhnya, gue coba kasih gambaran dari titik pusat dan jari-jari lingkaran, ya.
Dengan gambar titik pusat lingkaran di atas, semoga elo jadi semakin mengerti unsur-unsur yang ada di dalam sebuah lingkaran, ya.
Tapi, gimana sih cara menentukan titik pusat lingkaran? Gue punya 3 tahapan yang bisa elo ikutin buat menentukan titik pusat lingkaran.
Nah, kalau elo mau nyari titik pusat lingkaran lewat gambar, bisa ikutin tiga langkah di atas, ya! Setelah tahu versi gambarnya, gue mau ngasih tahu rumusnya, nih.
Baca Juga: Contoh Soal Keliling dan Luas Lingkaran Beserta Rumusnya
Contoh Soal Menentukan Titik Pusat Lingkaran
Sejauh ini, gue harap elo udah paham sama materi titik pusat lingkaran, ya. Supaya pemahaman elo semakin mendalam, gimana kalau kita adain kuis?
Yap! Gue punya tiga contoh soal buat menentukan titik pusat lingkaran, nih. Coba elo asah kemampuan elo tentang materi hari ini dengan mengerjakan ketiga soal di bawah ini, ya. Semangat!
Tentukan persamaan umum lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1).
A. (x+3)² + (y-7)² = 100
B. (x-3)² + (y-7)² = 100
C. (x+3)² + (y+7)² = 100
D. (x-3)² – (y-7)² = 100
Ingat bahwa persamaan umum lingkaran berbentuk
Dengan merupakan titik pusat lingkaran dan (y,p) merupakan titik yang dilalui. Maka dari itu, untuk lingkaran yang melalui titik pusat lingkaran P (-3, 7) dan melalui titik Q (-9, -1), dapat kita tentukan jari-jarinya terlebih dahulu, yaitu:
(-9 – (-3))² + (-1 – 7)² = r²
36 + 64 = 100, dengan demikian r² = 100
Sehingga, persamaan umum lingkarannya adalah (x + 3)² + (y-7)² = 100
Jadi, jawaban yang paling tepat yaitu A.
Diketahui persamaan standar lingkaran yaitu x² + y² – 12x + 5y = 20. Tentukan jari-jari dari lingkaran tersebut!
x² + y² – 12x + 5y = 20 merupakan persamaan standar lingkaran.
Dari (1) diperoleh dan , sehingga:
Dari persamaan (1) diketahui bahwa , maka:
Jadi, jawaban yang paling tepat yaitu A.
Diketahui persamaan standar lingkaran yaitu . Tentukan titik pusat lingkaran tersebut!
Untuk persamaan lingkaran yang berbentuk , maka titik pusatnya yaitu A = -12, B=-10. Sehingga:
Jadi, jawaban yang paling tepat yaitu B.
Gimana, materi pembelajaran kita hari ini? Nggak susah, kan? Mungkin, gue bisa highlight satu hal buat elo. Kalau elo mau mencari titik pusat lingkaran, ingat aja buat nyari titik koordinatnya dulu, ya.
Kalau koordinatnya udah ketemu, elo bisa nerusin hasil akhirnya dengan lebih mudah. Nah, dari ketiga contoh soal di atas … siapa yang jawabannya benar semua, nih?
Oh iya, kalau elo merasa tiga soal di atas masih kurang buat ngebantu elo belajar tentang titik pusat, tenang aja! Zenius punya puluhan latihan soal buat elo persiapan try out, lho.
Lumayan banget nih, bisa sambil mengasah kemampuan elo mengerjakan soal-soal nantinya. Yuk, langsung aja klik link di bawah ini buat ikutan latihan soalnya, ya!
Latihan Try Out Bareng Zenius
Nah, itu dia pembahasan kita hari ini tentang titik pusat lingkaran. Lengkap banget, kan? Mulai dari pengertian, rumus, garis singgung, sampai penjabaran dari contoh soal titik pusat lingkaran.
Kalau dari elo sendiri, gimana? Udah paham sejauh ini? Oh iya, Zenius juga punya materi matematika lainnya yang nggak kalah keren dan menarik, lho. Nah, video materi matematika di bawah ini langsung diajarin sama Sabda! Penasaran? Tonton videonya langsung, ya!
Contoh soal keliling lingkaran dengan diameter
Contoh soal keliling lingkaran dengan diameter
Danial sedang berenang di kolam berbentuk lingkaran. Sebelum mengitarinya, ia terlebih dahulu ingin mengetahui keliling lingkaran. Apabila diketahui diameternya sepanjang 20 meter, maka berapa kelilingnya?
Yang diketahui dari soal adalah diameter. Maka, menggunakan rumus Keliling Lingkaran = π x d. Kedua, karena panjang diameter bukanlah kelipatan tujuh, maka phi yang digunakan adalah 3,14. Adapun tahapan menghitungnya yakni:
Nah, panjang keliling kolam yang hendak diputari Danial adalah 62,8 meter.
Contoh soal keliling lingkaran dengan jari-jari
Contoh soal keliling lingkaran dengan jari-jari
Ani sedang bermain dengan sebuah roda yang memiliki jari-jari sepanjang 56 cm. Berapakah panjang keliling roda berbentuk lingkaran tersebut?
Lanjutkan membaca artikel di bawah
Karena yang diketahui merupakan jari-jari, maka rumus yang digunakan adalah Keliling Lingkaran = π x 2r. Selain itu, angka jari-jari merupakan kelipatan tujuh yang berarti menggunakan 22/7 sebagai phi. Selanjutnya, kamu tinggal memasukkan angka yang ada.
Jadi, keliling roda yang memiliki panjang jari-jari 56 cm tersebut adalah 352 cm.
Contoh soal keliling lingkaran
Cara menghitung keliling lingkaran pun cukup sederhana. Kamu hanya perlu memasukkan angka-angka yang tersedia ke dalam rumus. Lalu, lakukan perkalian atau pembagian sesuai dengan posisinya masing-masing.
Biar gak bingung, langsung coba contoh soal keliling lingkaran di bawah ini, yuk!
Unsur-Unsur Lingkaran
Dirangkum dari “Buku Pintar Bimbel SMP Kelas 7, 8, 9” oleh Budi Lintang S.Pd.I, berikut unsur-unsur lingkaran.
Gambar lingkaran (Katadata)
Titik pusat lingkaran adalah titik yang terletak di tengah-tengah lingkaran. Pada gambar datas, titik O adalah titik pusat lingkaran.
Jari-jari lingkaran adalah garis dari titik pusat lingkaran ke lengkungan lingkaran. Pada gambar, jari-jari lingkaran ditunjukkan oleh garis OA, OB, dan OC.
Diameter adalah garis lurus yang menghubungkan dua titik pada lengkungan lingkaran dan melalui titik pusat. Garis AB pada lingkaran O merupakan diameter lingkaran tersebut. Perhatikan bahwa BC =BO + OC. Dengan demikian, nilai diameter merupakan dua kali nilai jari-jari, maka d = 2r.
Dalam lingkaran, busur adalah garis lengkung yang terletak pada lengkungan lingkaran dan menghubungkan dua titik sebarang di lengkungan tersebut. Dalam gambar, garis lengkung AC, CB, dan AB adalah busur lingkaran.
Tali busur lingkaran adalah garis lurus dalam lingkaran yang menghubungkan dua titik pada lengkungan lingkaran. Berbeda dengan diameter, tali busur tidak melalui titik pusat lingkaran O. Tali busur lingkaran tersebut ditunjukkan oleh garis lurus AC yang tidak melalui titik pusat pada gambar tersebut.
Tembereng adalah luas daerah dalam lingkaran yang dibatasi oleh busur dan tali busur. Daerah yang dibatasi oleh busur AC dan tali busur AC adalah tembereng.
Juring lingkaran adalah luas daerah dalam lingkaran yang dibatasi oleh dua buah jari-jari lingkaran dan sebuah busur yang diapit oleh kedua jari-jari lingkaran. Pada gambar, juring lingkaran ditunjukkan oleh daerah yang diarsir dan dibatasi oleh jari-jari OA dan OB serta busur AB, dinamakan juring BOA.
Apotema merupakan garis yang menghubungkan titik pusat lingkaran dengan tali busur lingkaran tersebut. Garis yang dibentuk bersifat tegak lurus dengan tali busur.
Rumus Keliling Lingkaran
Keliling lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari atau radius lingkaran (r) atau diameter lingkaran (d). Rumus keliling lingkaran adalah K = 2πr atau K = πd. K merupakan lambang keliling lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.
Jika diketahui diameter, maka rumus keliling lingkaran adalah K = πd
Jika diketahui jari-jari, maka rumus keliling lingkaran adalah K = 2πr
Contoh Soal Keliling Lingkaran 2
Jika garis tengah sebuah lingkaran sepanjang 20 cm, berapa keliling lingkaran tersebut?
Garis tengah = diameter = d = 20 cmKeliling lingkaran = πdK = 3,14 x 20 cmK = 62,8 x cm
Maka, jawaban yang benar adalah 62,8 cm
Nah, itu dia cara menghitung keliling lingkaran beserta contoh soalnya. Yuk, coba latihan menggunakan rumus keliling lingkaran !
Apa, sih, lingkaran? Iya, yang bulat itu. Dilansir e-Gmat, lingkaran adalah bangun geometris yang terbentuk dari kumpulan titik pada jarak tetap. Lingkaran termasuk dalam bangun datar yang unik, sebab hanya punya satu lengkung dan gak ada titik sudut, layaknya bentuk lain.
Saat mempelajari bentuk geometri ini, kamu akan bertemu dengan rumus keliling lingkaran hingga luas bangun datar. Sebelumnya, akan lebih mudah kalau kamu memahami istilah-istilah yang menyusun bangun lingkaran nantinya dari cara menghitung keliling lingkaran hinga contoh soal keliling lingkaran akan dibahas dibawah ini. Apa saja?
Lingkaran adalah bangun datar yang tersusun dari titik-titik yang berjarak sama dari satu titik pusat. Jarak umum dari pusat lingkaran ke titik-titiknya disebut jari- jari. Jadi, secara keseluruhan, susunan lingkaran bergantung pada pusatnya (O) dan jari-jarinya (R).
Kalau mengamati sekitar, ada banyak benda yang berbentuk lingkaran. Yup, ada jam dinding, piring, alas gelas, hula hoop, dan masih banyak lainnya. Semuanya memiliki bentuk yang sama dan gak punya titik sudut.
Nah, ternyata, lingkaran gak sesederhana garis panjang yang melingkar, lho. Ada banyak istilah dalam bangun dua dimensi ini yang perlu kamu ketahui sebelum menghitung kelilingnya.
Agar lebih mudah memahaminya, kamu bisa melihat gambar di atas, ya.
Rumus Titik Pusat Lingkaran
Kalau nyari jari-jari lingkaran, mungkin elo udah tau rumus r = d : 2. Tapi, gimana sih, cara mencari titik pusat lingkaran?
Salah satu cara mencari titik pusat lingkaran yaitu menggunakan rumus. Kalau di kehidupan sehari-hari, elo bisa banget menggunakan rumus di bawah ini buat nyari titik pusat lingkaran di ring basket.
Tunggu, deh. Buat apa gue nyari titik pusat lingkaran yang ada di ring basket? Eits, ini dia menariknya!
Kalau elo main basket dan tahu angka tepat dari titik pusat lingkarannya, elo bisa lebih hati-hati saat melempar bola ke dalam ring supaya bisa masuk dengan tepat.
Nah, ini rumus yang bisa elo pakai buat mencari titik pusat lingkaran.
Selain rumus di atas, sebenarnya cara mencari titik pusat lingkaran ini beragam banget, lho. Biasanya, bakal diketahui persamaan lingkaran dulu, nih. Terus, elo bisa cari titik pusat lingkaran melalui koordinat.
Misalnya, diketahui persamaan lingkaran (x-1)² + (y-2)². Nah, elo jadi langsung tahu koordinat x di angka 1. Sedangkan koordinat y di angka 2. Itu dia rumus gampangnya kalau elo mau mencari titik pusat lingkaran.
Buat cari tahu titik koordinat kayak di atas, elo juga bisa menggunakan rumus persamaan kuadrat, nih. Kayak gimana rumusnya? Elo bisa cari tahu di artikel Rumus Persamaan Kuadrat dan Akar-Akarnya, ya.
Baca Juga: Rumus Persamaan Lingkaran dan Contoh Soal – Materi Matematika Kelas 11